欢迎来到汽车供应链寻源协同平台
摘要:本发明涉及一种基于越野工况预测的能量分配方法,属于电传动技术领域,解决了现有技术中混合动力履带车辆能量管理的问题。一种基于越野工况预测的能量分配方法,包括以下步骤:根据车辆历史行驶信息,建立基于SVM的履带车辆越野环境工况识别模型;实时检测当前车辆行驶信息,输入所述模型,预测得到当前车辆行驶工况;预测下一时刻车速和加速度,根据预测得到的当前车辆行驶工况和下一时刻的车速、加速度预测值,对下一时刻车辆需求功率进行计算;基于所述下一时刻需求功率,采用模型预测控制策略,以动态规划作为优化算法,得到下一时刻最优能量分配方式。实现了履带车辆在复杂越野工况下的能量分配,提高了履带车辆的动力性和燃油经济性。
摘要:本发明涉及一种混动无人履带车辆机电联合线控化制动系统及方法,属于履带车辆制动技术领域,解决了现有技术中履带车辆制动效果较差,机械及液压系统寿命较短的问题。一种混动无人履带车辆机电联合线控化制动系统,包括机械及液压系统、电路系统和控制系统,所述机械及液压系统包括机械结构和液压系统,所述机械结构是机械制动最终的执行机构,负责产生所需的制动力矩;所述液压系统包括液压泵,为机械制动提供动力;所述电路系统用于为车辆供电和提供信号通信网络;所述控制系统包括感知与规划模块、整车控制器、液压控制器和电机控制器。实现了机械制动和电机制动的联合,可有效改善履带车辆的制动效能,延长机械及液压系统的使用寿命。
摘要:本发明涉及一种混合动力车辆的供电自保护系统及方法,其中供电自保护系统包括,整车控制器、低压配电箱和高压配电箱;整车控制器与低压配电箱电连接,控制低压设备按设定的顺序上电或下电;整车控制器与能量控制器电连接,通过能量控制器控制高压设备上电或下电;通过控制使低压设备上电完成后高压设备上电;使高压设备下电后低压设备按设定的顺序下电。本发明通过供电自保护,在上、下电过程中避免了对低压电路产生比较大的冲击电流,从而损坏低压设备;避免了高压系统继电器的带电分断有可能使继电器粘连而导致车辆故障;并且通过预充电,分步提高高压设备的供电电流,减小了高压设备的电流冲击,保护了高压用电设备。
摘要:本发明涉及一种分布式电驱动无人履带车辆的整车控制方法,包括:对所述车辆的各用电设备进行低、高压上电;判断所述车辆是否处于人工制动状态;是,则进入人工制动模式;否,则进一步判断当前的车辆驾驶方式,如果驾驶方式是有人驾驶,驾驶员通过操纵遥控驾驶仪对所述车辆进行有人驾驶;如果驾驶方式是无人驾驶,则所述车辆在上层规划决策系统的控制下进行无人驾驶。本发明保证了车辆在有人驾驶和无人驾驶时的行驶安全性和自由切换,制动模式分为普通制动和紧急制动,既保证了车辆的正常停车,又能应对各种突发的紧急状况;行进模式下的前进和倒退又可分别细分为直驶和转向子模式,可充分发挥分布式电驱动履带车辆的通过性和灵活的转向性能。
摘要:本发明涉及一种针对分布式电驱动履带车辆的地面参量估计方法,包括以下步骤,通过离线训练方法,得到行驶路面的地面参量统计学模型;根据采集的车辆信息,利用所述地面参量统计学模型对车辆电机转矩进行预测;建立履带车辆动力学模型,计算得到车辆左、右两侧电机理论转矩,与左、右两侧电机转矩预测结果进行迭代运算得到包括地面变形阻力系数f和转向阻力系数μ在内的地面参量。本发明采用的试验数据均为日常跑车数据,数据均可通过整车数据采集系统直接得到,通过本发明方法无需过多的试验前准备,就可得到未知的地面参数。
摘要:本发明公开一种混合动力汽车能量管理方法及系统。该方法包括:利用基于历史车速和驾驶员行为训练的神经网络对未来车速进行预测,得到预测车速;利用通过采集的道路坡度数据所建立的基于自回归积分移动平均模型的坡度预测模型对道路坡度进行预测,得到预测道路坡度;根据预测车速和预测道路坡度计算需求功率;根据需求功率利用动态规划算法计算各个动力部件的扭矩和转速。本发明的混合动力汽车能量管理方法及系统,能够提高燃油经济性。
摘要:本发明涉及一种基于路面特性的分布式车辆转速控制方法及装置,属于车辆转速控制技术领域,解决了现有技术中转速控制方法无法适应复杂工况造成的乘车体验下降问题。一种基于路面特性的分布式车辆转速控制方法,包括以下步骤:接收期望转速和期望转向程度;采集当前车辆信息,得到车辆行驶的俯仰角和侧倾角;根据所述期望转速、期望转向程度、俯仰角和侧倾角,解析得到左侧驱动电机转速和右侧驱动电机转速;根据所述左侧驱动电机转速和右侧驱动电机转速调整两侧主动轮行驶速度。该方法能够适应越野环境下的复杂工况,有效减小行车时由于复杂地形而产生的冲击,提升越野环境下的行车舒适度。
摘要:
摘要:本发明涉及一种基于车辆姿态的快速地形工况辨识方法,包括:获取车辆实时姿态信息;将所述姿态信息输入地形分类SVM模型对车辆所处的地形工况进行坡道工况、颠簸路面工况和加减速工况分类;使用与分类结果对应的地形参量估计算法,对分类地形参量分别进行估计。本发明充分考虑了在越野环境行驶工况下引起车辆姿态变化的各种工况,建立快速入地形分类SVM模型;可以以80%以上的准确率识别出不同地形工况,识别速度快;并且不依赖于车辆纵向动力学模型,在不同平台间通用性好,提升智能车辆在行驶工况突变时的快速识别和反应调整能力,在无人驾驶领域具有广泛的使用前景。
摘要:本发明涉及一种驾驶员状态识别方法及系统,属于汽车智能交互技术领域,其方法包括:采集驾驶信息;根据采集的所述驾驶信息,提取驾驶特征参数,对驾驶员状态进行初步识别,得到驾驶员状态初步识别结果;根据得到的驾驶员状态初步识别结果,改变车辆状态;根据驾驶员调整车辆状态或适应车辆新状态时的操作数据以及相对应的车辆状态数据,进一步判定得到驾驶员状态识别结果。本发明解决了现有技术中驾驶员状态识别准确度低,误差大,容易受外界因素影响以及实用性不强的问题。